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Abstract

A four-dimensional variational (4D-var) data assimilation system for inverse modelling
of atmospheric methane emissions is presented. The system is based on the TM5 at-
mospheric transport model. It can be used for assimilating large volumes of measure-
ments, in particular satellite observations and quasi-continuous in-situ observations,5

and at the same time it enables the optimization of a large number of model parame-
ters, specifically grid-scale emission rates. Furthermore, the variational method allows
to estimate uncertainties in posterior emissions. Here, the system is applied to optimize
monthly methane emissions over a 1-year time window on the basis of surface obser-
vations from the NOAA-ESRL network. The results are rigorously compared with an10

analogous inversion by Bergamaschi et al. (2007), which was based on the traditional
synthesis approach. The posterior emissions as well as their uncertainties obtained in
both inversions show a high degree of consistency. At the same time we illustrate the
advantage of 4D-Var in reducing aggregation errors by optimizing emissions at the grid
scale of the transport model. The full potential of the assimilation system is exploited15

in Meirink et al. (2008), who use satellite observations of column-averaged methane
mixing ratios to optimize emissions at high spatial resolution, taking advantage of the
zooming capability of the TM5 model.

1 Introduction

Inverse modelling has been widely used as a tool to improve our knowledge on sources20

and sinks of atmospheric trace gases based on measurements of concentrations in the
atmosphere (Enting, 2002). Since such inversions of atmospheric transport are often
ill-conditioned, a priori information on the spatial and temporal distribution of sources
and sinks derived from emission inventories is normally used to regularize the problem.
The goal of inverse modelling is then to optimize these inventories and reduce their25

uncertainties using observations.
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Regarding atmospheric methane, mainly surface observations have been used for
this purpose so far (Hein et al., 1997; Houweling et al., 1999; Mikaloff Fletcher et
al., 2004; Bergamaschi et al., 2005; Chen and Prinn, 2006; Bousquet et al., 2006).
While the existing network of surface measurements constrains global emissions rela-
tively well, large continental regions (e.g. in the tropics) are poorly monitored. Quasi-5

continuous in-situ observations close to source regions can provide important informa-
tion on regional emissions (Bergamaschi et al., 2005), but the number of such mea-
surements remains very limited. Recently, satellite observations of column-averaged
methane mixing ratio became available from the Scanning Imaging Absorption Spec-
trometer for Atmospheric Chartography (SCIAMACHY) instrument on board ESA’s en-10

vironmental satellite ENVISAT (Buchwitz et al., 2005; Frankenberg et al., 2005, 2006;
Buchwitz et al., 2006). Bergamaschi et al. (2007) (hereafter B07) used these observa-
tions – along with the conventional surface measurements – for the first time to optimize
continental-scale emission rates.

Traditionally, most inverse modelling studies have been based on the synthesis ap-15

proach (Enting, 2002). This approach is mainly applicable when emissions are opti-
mized on a coarse resolution (e.g., for a limited number of pre-defined regions). Grid-
based optimization has been performed using the so-called adjoint technique (Houwel-
ing et al., 1999; Kaminski et al., 1999), but was in these studies restricted to relatively
small sets of observational data. To take full benefit from the existing and future satellite20

measurements, other techniques are required. Two branches of promising and com-
putationally feasible techniques are ensemble data assimilation (Evensen, 1994) and
four-dimensional variational (4D-Var) data assimilation (Talagrand and Courtier, 1987),
both building upon developments in Numerical Weather Prediction (NWP).

In recent years, variational data assimilation has been increasingly applied for the25

estimation of emission rates of atmospheric constituents. Examples include the in-
version of emission rates based on TIROS Operational Vertical Sounder (TOVS) CO2
observations (Chevallier et al., 2005), Measurements of Pollution in the Troposphere
(MOPITT) CO measurements (Stavrakou and Müller, 2006), surface observations of
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various short-lived trace gases (Elbern et al., 2007), and LIDAR measurements of dust
aerosols (Yumimoto et al., 2007). In synthetic frameworks, 4D-Var has been used to
study the utility of CO2 observations from the planned Orbiting Carbon Observatory
(OCO) mission (Baker et al., 2006; Chevallier et al., 2007) and CH4 observations from
SCIAMACHY (Meirink et al., 2006) for reducing uncertainties in emission estimates.5

An ensemble data assimilation system for inverse modelling of surface fluxes was, for
example, presented by Peters et al. (2005).

The purpose of this paper is to present and evaluate a new 4D-Var system for inverse
modelling of methane emissions. This new system is a further development of the work
by Meirink et al. (2006). The main changes include the use of TM5 instead of TM410

as underlying atmospheric transport model, the application of a different minimization
algorithm, and an improved implementation of the background (also termed prior) error
covariance matrix and preconditioning. A major advantage of the new set-up is that it
allows to estimate uncertainties of the posterior emissions.

To evaluate the new system, a 1-year inversion of surface observations will be com-15

pared in detail with an analogous synthesis inversion by B07. The comparison shows a
high degree of consistency, but also illustrates the advantage of the variational method.
In Meirink et al. (2008) the 4D-Var system is used to analyse SCIAMACHY obser-
vations with focus over South America, exploiting the zooming capability of the TM5
model.20

The paper is structured as follows. In Sect. 2, the transport model and its adjoint
as well as the 4D-Var implementation are presented. Section 3 contains the results of
the comparison with B07’s synthesis inversion. Some specific issues related to conver-
gence of the variational algorithm, diagnostics of the assimilation system and aggrega-
tion errors are discussed in Sect. 4. Finally, the main conclusions are summarized in25

Sect. 5.
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2 Method

2.1 Transport Model and Adjoint

The TM5 model is a global chemistry–transport model with a two-way nested zoom-
ing capability (Krol et al., 2005). TM5 is driven by meteorological fields (6-h forecasts)
from the European Centre for Medium Range Weather Forecasts (ECMWF) opera-5

tional model. We use the methane tracer version as described in B07, in which chem-
ical oxidation of CH4 is calculated from prescribed OH fields. These OH fields were
obtained from a full-chemistry model simulation and calibrated with methylchloroform
observations. The model is operated on a basic horizontal resolution of 6◦×4◦ globally.
The zooming option via 3◦×2◦ to 1◦×1◦ nested grids in specific regions is not used here,10

but in Meirink et al. (2008). In the vertical direction, 25 layers have been defined as a
subset of the 60 layers used operationally in the ECMWF model in 2003. Emissions
are described in Sect. 2.3.

For 4D-Var assimilation, an adjoint model is required. The coding of the adjoint was
done manually by matrix transposition, except for the slopes advection scheme (Rus-15

sell and Lerner, 1981), for which an adjoint was originally generated by the Tangent and
Adjoint Model Compiler (TAMC) (Giering and Kaminski, 1998). For the different pro-
cesses (vertical diffusion, convection, oxidation by OH, and emissions) the construction
of the adjoint was a rather straightforward task. Most complications encountered were
related to the merging and division of grid cells, which occurs in the communication20

between parent and child regions and in the reduced grid that is applied near the poles
to ensure numerical stability at reasonably large time steps. The exact reconstruc-
tion of so-called inactive variables, such as the air masses, was also a difficult task.
The adjoint was used recently in a study on the usefulness of 14CO measurements for
determining OH concentrations (Krol et al., 2007).25

The correctness of the adjoint was verified by checking the equality

〈Mx,y〉 = 〈x,MTy〉, (1)
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where M and MT denote the forward and adjoint TM5 model operators applied over
a certain time window, x and y are arbitrary forward and adjoint model states, and
〈 〉 denotes the inner product. In the standard TM5 model the tracer slopes in the
advection scheme are limited to avoid negative concentrations at the edges of grid
boxes. These limiters represent a non-linearity, but in the methane tracer version they5

are not needed, so that the forward model operator is linear and can thus be written
as a matrix M. It was verified that the relative difference between the left-hand and
right-hand terms in Eq. (1) is only ∼10−14 (i.e. machine precision), for arbitrary time
windows up to ∼ 1 year and arbitrary model states x and y.

2.2 4D-Var10

Compared to Meirink et al. (2006), the set-up of 4D-Var has been further updated in a
number of aspects, most importantly the minimization algorithm. Therefore, the major
components of the previous system are summarized and the new developments are
described in detail. It should be noted that 4D-Var as applied in the context of source
and sink optimization differs from the conventional use in NWP. In the latter, measure-15

ments are used to optimize three-dimensional meteorological fields over time windows
on the order of a day, serving as initial conditions for forecasting. Here, measurements
are used to optimize the two-dimensional distribution of surface emissions (although
the three-dimensional initial concentration field is also optimized), and the time window
is on the order of months. However, the mathematical framework is identical.20

The optimization problem has the following ingredients:

1. A set of observations y with a corresponding error covariance matrix R. The vec-
tor y contains the available observations during the time window of assimilation.
For convenience the time dimension is not explicitly denoted here.

2. A set of model parameters x (the control vector) with a corresponding background25

error covariance matrix B. In our case, the control vector can be written as x =
(sT

1 , . . . ,s
T
m,c

T ,pT )T , where si are monthly-mean surface emissions for source
12028
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category i and m is the number of source categories that are distinguished, c is
the three-dimensional concentration field at the start of the assimilation window,
and p contains any additional parameters, which account, for example, for a bias
in the measurements.

3. A model operator H, with Hx providing the equivalent of the observations y. This5

operator consists of application of the forward model M to the time of the mea-
surements followed by application of an observation operator, which interpolates
and/or vertically integrates methane concentrations on the model grid to produce
equivalents of the observations. Since this observation operator is linear in our
case (also for the SCIAMACHY observations assimilated in Meirink et al. (2008)),10

the operator H is linear.

The goal is to find the optimal control vector given the background estimate and ob-
servations taking into account their respective uncertainties. In 4D-Var this analysis x

a

(also termed posterior solution) is obtained by iteratively minimizing the following cost
function J with respect to x:15

J(x) =
1
2

(x − xb)TB−1(x − xb) +
1
2

(Hx − y)TR−1(Hx − y). (2)

The minimization algorithm requires calculations of the gradient of the cost function:

∇J(x) = B−1(x − xb) + HTR−1(Hx − y). (3)

After further differentiation, it can be seen that the Hessian of the cost function is inde-
pendent of x:20

∇2J(x) = B−1 + HTR−1H. (4)

Starting from the property that Equation (3) evaluated at xa is zero, it can be shown
(e.g., Fisher and Courtier, 1995) that the covariance matrix of analysis errors A equals
the inverse of the Hessian:

A =
(

B−1 + HTR−1H
)−1

. (5)25
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Throughout this paper analysis errors are mostly referred to as a posteriori errors.
We use the same minimization method as employed in the ECMWF 4D-Var (Fisher

and Courtier, 1995). A more detailed description can be found there and also in Cheval-
lier et al. (2005). In short, the method is based on the Lanczos algorithm (Lanczos,
1950) and allows to simultaneously minimize the cost function and derive the leading5

eigenvalues and eigenvectors of the posterior error covariance matrix. With precondi-
tioning (Courtier et al., 1994),

χ = L−1x, and LLT = B, (6)

which is applied to reach faster convergence to the minimum of the cost function, the
Hessian with respect to the preconditioned control variable χ becomes10

∇2
χJ(χ) = I + LTHTR−1HL. (7)

After N iterations, the minimization algorithm has estimated the N leading eigenvalues
λi and eigenvectors ν i of this matrix. Writing the Hessian in terms of this eigen decom-
position, inverting, and transforming back from χ to x, gives the approximation of the
posterior error covariance matrix:15

A ≈ B +
N∑
i=1

(
1
λi

− 1
)

(Lν i ) (Lν i )
T . (8)

This approximation converges to the true posterior error covariance matrix as λi goes
to one with increasing number of iterations. From Eq. (8) it follows that the diagonal
elements of the approximation of A strictly decrease with every iteration added. There-
fore, the method always yields an overestimate of the diagonal elements of A, which20

represent the posterior variances.
The a priori error covariance matrix B is much too large (typically ∼1011 numbers) to

be stored in memory. However, by making some reasonable assumptions, the required
storage can be sharply reduced. First, the covariance matrix is split up in a correlation
matrix C and a diagonal matrix D containing the standard deviations:25

B = DCD. (9)
12030
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Furthermore, the following assumptions are made: (i) the emissions in different source
categories, the initial concentration field, and the additional parameters have mutually
uncorrelated errors; (ii) the error correlation matrices for emissions, Csi

, can be split

into independent spatial, Ch
si

, and temporal, Ct
si

, parts; (iii) the error correlation matrix

for initial concentrations, Cc, can be split into independent horizontal, Ch
c, and vertical,5

Cv
c, parts. With these assumptions, we can write:

C =


Cs1

0 0 0 0

0
. . . 0 0 0

0 0 Csm
0 0

0 0 0 Cc 0
0 0 0 0 Cp

 =


Ct
s1

⊗ Ch
s1

0 0 0 0

0
. . . 0 0 0

0 0 Ct
sm

⊗ Ch
sm

0 0
0 0 0 Cv

c ⊗ Ch
c 0

0 0 0 0 Cp

 , (10)

where ⊗ is the Kronecker matrix product and Cp is the error correlation matrix for the
additional parameters. Herewith, the storage requirements are reduced to a number
of Ch matrices, which contain the square of the number of grid points in a horizontal10

plane. This is typically on the order of 107, small enough to be stored in computer
memory. The Ch matrices are modelled by a Gaussian function of the distance be-
tween grid cells, with pre-defined correlation length scales Lsi

and Lc. Similarly, the

Ct
si

are modelled by an exponential function of the time difference, with pre-defined cor-
relation time scales τsi

. As outlined in Meirink et al. (2006), Cv
c is determined with the15

National Meteorological Center (NMC) method (Parrish and Derber, 1992). Finally, Cp

is usually an identity matrix, stating that the errors in the parameters are uncorrelated.
The square roots of the various correlation submatrices, needed for the preconditioning
(Eq. 6), are determined by eigenvalue decomposition.
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2.3 Inversion Set-up

The CH4 inversions presented in B07 provide an excellent test case for the newly
developed 4D-Var assimilation system. Briefly, scenario S1 in B07 comprised a 1-year
synthesis inversion of monthly-mean methane emissions from 11 source categories
and for a number of large geographical regions, based on surface observations from5

the NOAA ESRL network. We have repeated this inversion with our 4D-Var approach,
copying the set-up as well as possible. Specifically, we use the same forward model,
including meteorological input, the same a priori emissions, and the same set of surface
observations and corresponding errors.

Total a priori emissions for the year 2003 are listed in Table 1 for the 11 source10

categories and for – dependening on the category – 1 to 7 large regions as shown in
Fig. 1.

Methane surface observations are taken from the NOAA ESRL global cooperative
air sampling network (Dlugokencky et al., 1994, 2003). Only flask measurements from
marine and continental background sites are used. The 32 selected sites are listed in15

B07 (Table 1) and depicted in Fig. 2. The yi in the cost function are individual surface
observations, which are compared with modelled 3-hourly mean concentrations. The
measurement error is assumed to be 3 ppb, to which an estimate of the representa-
tiveness error is added, based on the 3D model gradient (Bergamaschi et al., 2005).
Measurement errors are assumed to be uncorrelated. The inversion is carried out in20

two cycles. In the second cycle only those observations are assimilated that differ less
than three times the observation error from the posterior model simulation of the first
cycle.

The major difference between the present inversion and B07 is the control vector and
therefore also the prior error covariance matrix. In B07, the control vector consisted of25

monthly emissions for the different source categories and regions plus a scaling factor
for the initial concentration field. In the 4D-Var, the control vector consists of monthly
emissions for the same categories but for all individual grid cells plus the grid-scale
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initial concentration field. For technical reasons, we did not perform a two-months
spin-up as in B07, but we did include January 2004 in the assimilation window, since
the measurements in this month provide a constraint on emissions in the last months
of 2003. The dimension of the control vector thus becomes: (13 months × 11 source
categories + 25 vertical levels of the initial concentration field) × (60 × 45 grid cells) =5

453 600, compared to 541 in B07. The actual number of degrees of freedom in the 4D-
Var control vector is only a small fraction of its dimension due to the assumed spatial
and temporal error correlations.

The a priori errors of grid-cell emissions are set to the same relative levels as the a
priori errors of big-region emissions in B07, varying from 30% for enteric fermentation10

to 80% for, e.g., wetlands. Spatial correlations are modelled by normal distributions
where the correlation length scales have been chosen such that the a priori errors
aggregated to big regions are close to those in B07. This yields very large length scales
of 20 000 km for wild animals, termites, soil oxidation and ocean, 4000 km for wetlands,
and 5000 km for the other categories. Temporal correlations are specified exactly the15

same as in B07, i.e.: no correlations for wetlands, rice paddies and biomass burning,
and exponential correlations with a 9.5-months correlation time scale (month-to-month
correlation of 0.9) for all other sources. Table 1 shows the resulting a priori errors
aggregated to a whole year and to big regions. They are indeed close to the values in
the synthesis inversion.20

Apart from the above reference inversion (termed scenario A), an alternative inver-
sion was conducted (scenario B), in which the prior error spatial correlation lengths
were set to 1000 km for all source categories. To arrive at the same globally aggre-
gated prior uncertainty as in the reference inversion, the prior standard deviations were
multiplied by a factor ≈2.5.25
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3 Results

3.1 Convergence

The convergence of the minimization algorithm is analysed in Fig. 3. The norm of the
gradient of the cost function decreases rapidly and steadily. The iteration is stopped
when a reduction of 1010 is reached. This point is reached after 56 iterations for the5

present inversion. A good proxy for convergence are the eigenvalues of the Hessian,
estimated by the Lanczos algorithm. Figure 3b shows that the eigenvalues decrease
rapidly and have reached values close to one in the last iteration. A more direct way of
evaluating convergence, is to inspect the estimate of the Hessian itself, and changes
therein. Figure 3c and d illustrates this in the form of uncertainty reduction, defined10

as 1−σa/σb, where σb and σa denote the (potentially aggregated) prior and posterior
error, respectively. The latter is estimated from Eq. (8). At the end of the inversion,
the mean grid-scale uncertainty reduction reaches a value of around 5%. As will be
discussed in Sect. 4.1, full convergence has not yet been reached at this stage. When
aggregated over months, categories and large regions, the uncertainty reduction con-15

verges much faster (Fig. 3d), and stable estimates are obtained after about 45 itera-
tions. Note that the uncertainty reduction on the grid scale is very low (and it is even
lower when the spatial error correlation length is decreased). However, it becomes
much larger when aggregated over months, categories and large regions, showing
that the measurements are indeed useful to constrain emissions on larger spatial and20

temporal scales.
In contrast to the errors in posterior emissions, the posterior emissions themselves

have converged in about 20 iterations (not shown). Thus, if one is interested in emis-
sions only, relatively few iterations are sufficient, but if reliable posterior error estimates
are needed, many more iterations are required. This implies that large gradient norm25

reductions must be achieved, for which an exact adjoint model is a prerequisite.
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3.2 Emission Increments

In Fig. 2 the total emission increments (posterior minus prior) obtained with the 4D-
Var and synthesis inversions are compared. At first glance the results are in excellent
agreement. Both inversions propose enhanced emissions in the tropics and decreased
emissions in the northern-hemispheric (NH) high latitudes. This large-scale increment5

is mainly driven by the need for the system to correct the too large interhemispheric (IH)
concentration gradient in the a priori TM5 simulation and reduce the emissions of NH
wetlands during summer. When a closer look at the details is taken, some differences
emerge. Most notably, the emission increments in South-East Asia are different. The
4D-Var suggests a quite strong decrease in emissions, while the synthesis inversion10

provides a more mixed pattern. Further analysis shows that these differences can be
largely attributed to opposite increments in emissions from rice cultivation (see below).
In principle, 4D-Var is more flexible by optimizing (spatially correlated) grid-cell fluxes
versus fixed flux patterns in a few big regions in the synthesis inversion. In order to
compare to the synthesis inversion, very large correlation length scales have been used15

in the present 4D-Var inversion, so that this difference in flexibility should be relatively
small. It is thus not completely clear what causes the specific differences between both
inversions on the smaller scales. Certainly, the problem at hand has many near-optimal
solutions. Therefore, it is probably to be expected that both inversion systems come up
with slightly different answers.20

Table 1 gives a more quantitative comparison of the emissions estimated by the
synthesis and 4D-Var inversions. The overall agreement is good, although for some
categories there are substantial differences. For example, the global total rice emis-
sion increment is +3.7 Tg and −4.0 Tg for the synthesis and 4D-Var, respectively. The
difference is, however, still only slightly larger than the posterior uncertainty estimates25

of 6.7 and 6.5 Tg, respectively. Interestingly, both inversions yield nearly vanishing pos-
terior oceanic emissions. In the next Section we will show that this is likely an artefact
related to the large regions/large correlation lengths employed.
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3.3 Comparison With Measurements

Figure 4 shows a comparison of prior and posterior model simulations with observa-
tions at the same 8 stations displayed in B07’s Fig. 4. In general, the observed seasonal
cycles and synoptic-scale events are captured very well already in the prior model sim-
ulation. There are two clear exceptions. First, at the NH high-latitude stations, here5

represented by Barrow, the prior simulation is much too high, particularly in summer.
This is explained by the high boreal wetland emissions in the applied a priori inventory,
which are substantially reduced by the inversion, leading to a good correspondence
between the posterior model simulation and the observations.

Second, at the southern-hemispheric (SH) stations, the prior simulation is drifting10

away from the observations, leading to an increasing underestimation in the course
of the year. This feature reflects the general overestimation of the IH gradient in the
free-running model. The cause of this overestimation may be an error in the prior
emissions or in the seasonality and IH gradient of OH, but could also be related to
errors in model transport. Detailed comparison of SF6 simulations with observations15

also showed a slight overestimation of the IH SF6 gradient, although the derived IH
mixing time of 10.4 months was well within the typical range of atmospheric transport
models (Bergamaschi et al., 2006). Since model transport and OH distribution are
assumed to be perfect in the inversion, the overestimated IH gradient is corrected by
enhancing emissions in the tropics and the SH.20

The green curves in Fig. 4 correspond with a simulation based on optimized emis-
sions from B07’s synthesis inversion. The time series from both inversions are hardly
discernible at most locations most of the time, highlighting again the high degree of
consistency between the 4D-Var and the synthesis inversions.

3.4 Uncertainty Reduction25

The posterior errors derived from the 4D-Var inversion using Eq. (8) have been aggre-
gated to the big regions of the synthesis inversion in Table 1. The resulting uncertainty

12036

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/12023/2008/acpd-8-12023-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/12023/2008/acpd-8-12023-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
8, 12023–12052, 2008

Inverse modelling of
atmospheric methane

emissions

J. F. Meirink et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

reductions in the 4D-Var and synthesis inversions are very similar. For the global total
emission both approaches yield an error reduction estimate of almost 90%. Differences
of more than 10% occur for only four category–region combinations.

From Eq. (5) it is evident that the uncertainty reduction of a surface flux is determined
by (i) the extent to which this flux is seen by the observations and (ii) the ratio of the a5

priori error (which is assumed to be proportional to the a priori flux) and the observation
errors. Indeed, the uncertainty reductions are generally largest for the NH regions in
which most measurement stations are located and over which substantial emissions
take place. At first glance, the ocean category seems to be a notable exception: it
shows a large error reduction of around 50% despite its modest prior uncertainty. The10

explanation for this large error reduction is given in Sect. 4.3.

4 Discussion

4.1 Convergence

There are a few issues evolving from Fig. 3 that deserve further discussion. First of
all, the mean grid-scale uncertainty reduction (panel c) may appear to have converged15

after 55 iterations, but when more iterations are performed, it still shows an additional
increase (not shown). From a series of inversions we could accurately approximate the
convergence behaviour by an exponential function. From this approximation it is esti-
mated that for the present inversion the actual (converged) mean uncertainty reduction
is about 7.5% instead of 5%. Correspondingly, the Hessian eigenvectors are close to 120

after 55 iterations, but remain large enough in further iterations to yield non-negligible
contributions to the posterior error in Eq. (8).

Experiences with similar inversions of CO2 emissions show a slower convergence of
Hessian eigenvectors than in our case (F. Chevallier, personal communication). Obvi-
ously, the speed of convergence is related to prior and observational errors and their25

correlations. One reason why there is slower convergence for CO2 may be that the
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prior error distribution is more spatially homogeneous than used here for CH4, giving
effectively more degrees of freedom to modify the emissions. Indeed, a test inversion
with homogeneous CH4 a priori error distributions took about 40 iterations more to
converge than the reference inversion.

A second feature is that posterior errors aggregated over space and time converge5

much faster than on the grid scale (compare Fig. 3c and d). This can be explained
as follows (see also Fisher and Courtier, 1995; Chevallier et al., 2005): in the first it-
erations the large-scale emission patterns are determined, while in later iterations the
smaller-scale patterns are finetuned. The increments in later iterations are mainly lo-
cated in regions where the prior error is relatively small. These increments do influence10

the mean grid-scale uncertainty reduction, but they have very little impact on the ag-
gregated uncertainty reduction. Most often we are interested in uncertainty reductions
over somewhat larger regions than the grid scale. For this purpose the Lanczos al-
gorithm appears to give accurate estimates within a reasonable number of iterations.
This remains true when large volumes of satellite data are assimilated, as is shown in15

Meirink et al. (2008).

4.2 Diagnostics

A useful diagnostic, indicating whether the assimilation is optimal, i.e. measurement
and prior errors have been properly set relative to each other, is the χ2 (e.g., Tarantola,
2005):20

χ2 = (Hxb − y)T (HBHT + R)−1(Hxb − y). (11)

When x
b and y are interpreted as random vectors, being randomly distributed around

the truth x
t and y

t, respectively, the random variable in Eq. (11) should follow a χ2

distribution with n degrees of freedom, where n is the number of observations. In 4D-
Var, H and HT are not available in matrix representation. Therefore, we use an identical25

representation in terms of the optimal solution (Tarantola, 2005):

χ2 = 2J(xa) = (xa − xb)TB−1(xa − xb) + (Hxa − y)TR−1(Hxa − y). (12)
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For the reference inversion, a value of χ2/n=1.30 is obtained. The alternative inversion
scenario B with shorter spatial error correlation lengths of 1000 km yields χ2/n=1.08,
thus somewhat closer to 1, reflecting the larger number of degrees of freedom in the
control vector.

Whereas the χ2-criterion from Eq. (11) can be naturally applied to a subset of the5

observations (e.g. at a certain station or within a specific time window), this is not the
case for Eq. (12) as it contains a background term which cannot be coupled to specific
observations. Still, the analysis–minus–observation residuals Hx

a−y are often studied
for selected observations. In case of uncorrelated observation errors, one then writes:

χ2 ≈
ns∑
i=1

(
((Hx

a)i − yi )

σyi

)2

, (13)10

where σyi
is the uncertainty of measurement yi in an observation subset with size

ns. Given the omission of the background term, the calculated χ2 should be smaller
than ns. However, in our case the background term of the cost function contributes
typically 10% to the total cost, so that χ2/ns from Eq. (13) should still be close to 1.
B07 obtained χ2/ns=1.2 for the whole set of observations. Our reference inversion15

yields the same value, while scenario B yields χ2/ns=0.9. It thus appears that 4D-
Var, having a higher flexibility in changing emission patterns, is indeed able to reach a
closer fit to the observations than the synthesis inversion, but when it is run with large
correlation lengths the fit to the observations is very similar. It should be noted that
χ2/ns is considerably influenced by the 2-cycle inversion approach (see Sect. 2.3). In20

the second cycle χ2/ns is lower because posterior outlier observations from the first
cycle (typically 2.5% of the total number of measurements) have been removed.

Between the measurement stations there is considerable variability in χ2/ns. The
lowest values (χ2/ns≈0.2) are obtained for the Antarctic stations, indicating that the
measurement precision estimate of 3 ppb may be too conservative. On the other hand,25

χ2/ns goes up to 2 at some stations (e.g. AZR). These high values may be related
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to unresolved small-scale variability in the model or to an underestimate of the rep-
resentation error for some sites. The wide range of chi-squared for different stations
demonstrates that one should be careful when using a single global chi-squared statis-
tic for diagnosing the overall performance of the assimilation system.

4.3 Uncertainty Reduction and Aggregation Error5

As shown in Table 1, the posterior ocean emissions in both the synthesis and the 4D-
Var inversions are nearly zero, while at the same time a large uncertainty reduction of
≈50% is calculated. This feature is related to the so-called aggregation error (Kaminski
et al., 2001; Engelen et al., 2002). Due to the large spatial error correlation lengths
assumed in the 4D-Var inversion and the big regions applied in the synthesis inversion,10

in fact all marine background stations contribute to an uncertainty reduction of the
global ocean emission.

The alternative inversion scenario B with shorter error correlation lengths (see right-
most columns of Table 1) further illustrates the impact of the aggregation error. The
uncertainty in the global ocean emissions is now reduced by only 5%. At the same15

time, the ocean emissions are hardly reduced. Also for other source categories large
changes in posterior emissions are obtained. In general, the posterior totals are
much closer to the prior, except for wetland emissions, which increase by more than
20 Tg yr−1. The global total emissions over all categories appear to be relatively tightly
constrained at around 525 Tg yr−1, given the OH distribution currently applied in our20

inversions.
The spatial patterns of the uncertainty reduction in inversion scenarios A and B are

shown in Fig. 5. With increasing correlation length, the uncertainty reduction on the
grid scale increases, and the spatial pattern shows broader structures. The reason
for this is that more measurements contribute to uncertainty reduction in a certain grid25

box. In other words: the region of influence of a measurement increases artificially. The
plot for the reference inversion looks a little noisy. In contrast, the spatial patterns of
uncertainty reductions for individual categories are smooth (not shown). The noisiness
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is thus mainly caused by the aggregation over different source categories.
The possibility to estimate emissions at high resolution is a major advantage of 4D-

Var compared to the traditional synthesis approach, since it reduces the risk of ag-
gregation errors due to measurements having artifically large regions of influence. An-
other advantage of grid-based inversions is that the information present in observations5

with high spatial and temporal resolution, such as satellite and high-frequency in-situ
measurements, can be better exploited. Indeed, the main computational advantage of
4D-Var is achieved in inversions with large control vectors and with many assimilated
observations.

5 Conclusions10

We have presented a 4D-Var system for optimizing methane emissions based on ob-
servations of atmospheric methane concentrations. The main advantage of the 4D-Var
system compared to the classical synthesis inversion is that emissions can be opti-
mized at high spatial resolution and that large volumes of observational data can be
taken into account. Furthermore, a specifically useful feature of our inversion system is15

that it allows to estimate uncertainties of the optimized emissions. A 4D-Var inversion
with large spatial correlation lengths of prior emission errors was rigorously compared
with a previously performed synthesis inversion, showing a high degree of consistency
in terms of both posterior emission estimates as well as their uncertainties. At the
same time, an inversion with smaller spatial error correlation lengths demonstrated the20

advantage of 4D-Var in reducing aggregation errors. The full benefit of the new sys-
tem becomes apparent when larger numbers of observations are assimilated. This is
illustrated in Meirink et al. (2008), who use SCIAMACHY satellite observations to infer
global CH4 emissions with a focus on South America.
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Table 1. Prior and posterior emissions and uncertainties for synthesis inversion of B07 (sce-
nario S1) and two 4D-Var inversions aggregated over the complete year 2003 and over the
regions defined in Fig. 1. Units are Tg CH4 yr−1. The fractional uncertainty reduction is given
in the columns “U.r.”. Two 4D-Var inversions with different error correlation length scales (see
text) are shown. 4D-Var a posteriori emissions deviating more than 20% from the synthesis
inversion estimate have been printed in bold face. The same holds for uncertainty reductions
deviating more than 0.1 from the synthesis inversion estimate.

Synthesis 4D-VAR
B07 scenario S1 Scenario A Scenario B

L=4000−20 000 km L=1000 km
Source Region Prior Posterior U.r. Prior Posterior U.r. Prior Posterior U.r.

Coal NH1 3.7± 1.5 4.3± 1.5 0.00 3.7± 1.4 4.4 ± 1.4 0.02 3.7± 2.5 4.9 ± 2.4 0.03
NH2 5.1± 2.1 4.9± 2.0 0.05 5.1± 2.0 6.2± 1.9 0.03 5.1± 3.0 4.1 ± 2.9 0.03
NH3 11.1± 4.6 13.4± 3.8 0.17 11.1± 4.1 16.2± 3.8 0.08 11.1± 5.2 11.7 ± 4.8 0.07
SH 6.8± 2.8 8.9± 2.3 0.18 6.8± 2.4 9.0 ± 2.2 0.11 6.8± 5.4 7.8 ± 3.9 0.27
GLOBAL 26.6± 6.0 31.5± 5.0 0.17 26.6± 5.9 35.8 ± 5.4 0.09 26.6± 8.4 28.4 ± 7.1 0.16

Oil and gas NH1 3.4± 1.4 4.9± 1.2 0.14 3.4± 1.2 4.3 ± 1.2 0.02 3.4± 1.3 4.0 ± 1.3 0.01
NH2 27.8±11.5 26.5± 7.6 0.34 27.8± 9.9 16.9± 6.5 0.35 27.8±10.9 22.1 ± 8.6 0.21
NH3 16.1± 6.7 8.9± 4.0 0.40 16.1± 5.0 14.9± 3.2 0.36 16.1± 5.4 11.2± 3.8 0.29
SH 3.3± 1.4 3.4± 1.4 0.00 3.3± 1.0 3.8 ± 1.0 0.02 3.3± 1.4 3.6 ± 1.4 0.01
GLOBAL 50.6±13.5 43.7± 7.2 0.47 50.6±14.1 39.8 ± 8.4 0.40 50.6±12.9 40.9 ± 9.0 0.30

Ent. ferm. NH1 15.3± 3.8 17.1± 3.4 0.11 15.3± 3.3 19.3 ± 3.1 0.06 15.3± 3.6 19.3 ± 3.4 0.04
NH2 25.9± 6.4 23.6± 5.6 0.12 25.9± 5.1 25.0 ± 4.6 0.10 25.9± 4.9 26.0 ± 4.6 0.07
NH3 37.5± 9.3 30.7± 7.8 0.16 37.5± 8.2 29.8 ± 7.1 0.13 37.5± 9.0 32.6 ± 8.1 0.10
SH 20.8± 5.2 25.6± 3.9 0.25 20.8± 3.5 26.0 ± 3.1 0.11 20.8± 4.1 24.8 ± 3.7 0.10
GLOBAL 99.6±13.0 97.1±10.9 0.16 99.6±12.7 100.1 ±11.0 0.13 99.6±11.7 102.7 ±10.5 0.10

Rice NH1 1.1± 0.2 1.1± 0.2 0.00 1.1± 0.2 1.1 ± 0.2 0.00 1.1± 0.2 1.1 ± 0.2 0.00
NH2 1.9± 0.4 1.9± 0.4 0.00 1.9± 0.3 1.9 ± 0.3 0.01 1.9± 0.4 1.9 ± 0.4 0.00
NH3 49.6± 8.8 52.9± 6.6 0.25 49.6± 7.9 45.6 ± 6.2 0.22 49.6± 9.3 50.9 ± 7.4 0.21
SH 7.3± 1.3 7.5± 1.3 0.00 7.3± 0.9 7.0 ± 0.9 0.01 7.3± 1.6 6.8 ± 1.6 0.00
GLOBAL 59.7± 8.9 63.4± 6.7 0.25 59.7± 8.1 55.7 ± 6.5 0.20 59.7± 9.5 60.7 ± 7.6 0.20

Bio. burn. EXNH 1.1± 0.4 1.2± 0.4 0.00 1.1± 0.3 1.3 ± 0.3 0.00 1.1± 0.4 1.3 ± 0.4 0.00
TR1 8.7± 2.6 8.8± 2.2 0.15 8.7± 2.5 8.6 ± 2.2 0.13 8.7± 3.6 10.0 ± 3.1 0.15
TR2 9.7± 2.5 10.0± 2.1 0.16 9.7± 2.3 9.1 ± 2.1 0.10 9.7± 3.4 9.5 ± 2.8 0.18
TR3 3.8± 1.1 3.4± 1.1 0.00 3.8± 1.0 3.2 ± 1.0 0.01 3.8± 1.6 3.3 ± 1.5 0.02
EXSH 0.2± 0.1 0.2± 0.1 0.00 0.2± 0.0 0.2 ± 0.0 0.03 0.2± 0.1 0.2± 0.1 0.00
GLOBAL 23.6± 3.8 23.6± 3.1 0.18 23.6± 3.7 22.5 ± 3.2 0.14 23.6± 5.2 24.2 ± 4.3 0.17

Waste NH1 10.8± 4.5 11.6± 3.7 0.18 10.8± 3.9 13.9± 3.6 0.09 10.8± 4.3 14.2± 4.0 0.07
NH2 17.3± 7.2 15.8± 6.1 0.15 17.3± 6.0 21.5± 5.2 0.14 17.3± 5.9 17.7 ± 5.3 0.11
NH3 33.7±14.0 34.6± 9.8 0.30 33.7±11.7 33.4 ± 8.9 0.24 33.7±12.0 26.1± 9.9 0.18
SH 7.9± 3.3 10.4± 3.1 0.06 7.9± 1.8 9.1 ± 1.7 0.04 7.9± 2.1 8.7 ± 2.0 0.01
GLOBAL 69.7±16.7 72.4±12.0 0.28 69.7±15.9 77.9 ±12.1 0.24 69.7±14.3 66.7 ±11.6 0.19

Wetlands EXNH1 32.5± 9.1 22.3± 2.7 0.70 32.5± 7.8 24.2 ± 2.8 0.64 32.5± 9.8 25.6 ± 3.8 0.61
EXNH2 8.9± 2.3 3.2± 1.3 0.43 8.9± 2.1 2.9 ± 1.1 0.46 8.9± 3.2 5.2± 2.1 0.34
EXNH3 18.5± 5.7 17.0± 2.7 0.53 18.5± 4.8 14.5 ± 2.3 0.52 18.5± 6.7 17.2 ± 3.4 0.48
TR1 49.9±12.1 63.0± 6.0 0.50 49.9±10.6 61.5 ± 6.5 0.39 49.9±13.1 67.5 ± 7.2 0.45
TR2 24.4± 5.8 31.2± 4.5 0.22 24.4± 5.3 30.6 ± 4.4 0.17 24.4± 7.9 30.7 ± 6.0 0.25
TR3 38.6± 9.2 44.2± 7.0 0.24 38.6± 7.1 42.8 ± 6.5 0.09 38.6± 9.6 46.7 ± 8.7 0.10
EXSH 1.8± 0.5 1.9± 0.5 0.00 1.8± 0.4 2.2 ± 0.4 0.08 1.8± 0.7 2.0 ± 0.7 0.03
GLOBAL 174.6±19.6 182.7± 9.4 0.52 174.6±18.7 178.8 ±10.1 0.46 174.6±22.2 195.0 ±12.0 0.46

Wild animals GLOBAL 5.0± 2.1 6.5± 2.0 0.05 5.0± 1.9 7.2 ± 1.9 0.00 5.0± 0.7 5.2± 0.7 0.00
Termites GLOBAL 19.2± 8.0 30.6± 7.0 0.12 19.2± 7.3 30.3 ± 6.7 0.08 19.2± 3.7 22.7± 3.6 0.02
Soil GLOBAL −37.8± 6.4 −29.8± 6.0 0.06 −37.8± 5.8 −24.7 ± 5.6 0.04 −37.8± 2.1 −36.4± 2.1 0.00
Ocean GLOBAL 17.0± 7.0 1.9± 3.2 0.54 17.0± 6.3 1.4± 3.3 0.48 17.0± 2.1 15.1± 2.0 0.05
Total GLOBAL 507.7±36.0 523.5± 4.4 0.88 507.7±34.8 524.6 ± 3.9 0.89 507.7±34.8 525.2 ± 6.8 0.80
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Fig. 1. Definition of geographical regions used in the synthesis inversion by B07.
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a

b

Fig. 2. Total emission increment for (a) 4D-Var inversion of this study (scenario A) and (b)
synthesis inversion of B07 (scenario S1).
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b

c

d

Fig. 3. Convergence of the 4D-Var minimization. As a function of iteration are shown: (a) the
log of the norm of the cost function gradient relative to the prior simulation, (b) the log of the
eigenvalue of the Hessian matrix, (c) the average uncertainty reduction of 1-month, 1-category,
1-grid-cell emissions, and (d) the aggregated emission uncertainty reduction over 1 year, all
categories, and 5 different large regions (as represented in Fig. 1).
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Fig. 4. Comparison of model simulations based on prior emissions (blue), posterior 4D-Var
emissions (red), and posterior synthesis inversion emissions (B07, scenario S1) (green) with
observations (black symbols) at eight NOAA stations during 2003. Black vertical bars indicate
the total observation error (including representativeness error).
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b

Fig. 5. Emission uncertainty reduction aggregated over the complete year 2003 and over all
source categories for (a) 4D-Var reference scenario A and (b) scenario B using shorter prior
error correlation lengths. Note the different color scales in both panels.
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